HYPERBOLA
(KEY CONCEPTS + SOLVED EXAMPLES)

HYPERBOLA

1. Standard equation and definitions
2. Conjugate Hyperbola
3. Parametric equation of the Hyperbola
4. Position of a point $P\left(x_{1}, y_{1}\right)$ with respect to Hyperbola
5. Line and Hyperbola
6. Equation of the Tangent

KEY CONCEPTS

1. Standard Equation and Definitions

Standard Equation of hyperbola is $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$

(i) Definition hyperbola :

A Hyperbola is the locus of a point in a plane which moves in the plane in such a way that the ratio of its distance from a fixed point (called focus) in the same plane to its distance from a fixed line (called directrix) is always constant which is always greater than unity.
(ii) Vertices :

The point A and A^{\prime} where the curve meets the line joining the foci S and S^{\prime} are called vertices of hyperbola.
(iii) Transverse and Conjugate axes :

The straight line joining the vertices A and A^{\prime} is called transverse axes of the hyperbola. Straight line perpendicular to the transverse axes and passes through its centre called conjugate axes.

(iv) Latus Rectum :

The chord of the hyperbola which passes through the focus and is perpendicular to its transverse axes is called latus rectum. Length of latus rectum $=\frac{2 b^{2}}{a}$.

(v) Eccentricity :

For the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, b^{2}=a^{2}\left(e^{2}-1\right)$

$$
\mathrm{e}=\sqrt{1+\left(\frac{2 \mathrm{~b}}{2 \mathrm{a}}\right)^{2}}=\sqrt{1+\left(\frac{\text { Conjugate axes }}{\text { Transverse axes }}\right)^{2}}
$$

(vi) Focal distance :

The distance of any point on the hyperbola from the focus is called the focal distance of the point.

Note : The difference of the focal distance of a point on the hyperbola is constant and is equal to the length of the transverse axes. $\left|\mathrm{S}^{\prime} \mathrm{P}-\mathrm{SP}\right|=2 \mathrm{a}$ (const.)

2. Conjugate Hyperbola

The hyperbola whose transverse and conjugate axes are respectively the conjugate and transverse axes of a given hyperbola is called conjugate hyperbola.

Equation of conjugate hyperbola $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Note :

(i) If e_{1} and e_{2} are the eccentricities of the hyperbola and its conjugate then $\frac{1}{\mathrm{e}_{1}{ }^{2}}+\frac{1}{\mathrm{e}_{2}{ }^{2}}=1$
(ii) The focus of hyperbola and its conjugate are concyclic.

S.No. Particulars	Hyperbola	Conjugate Hyperbola
	$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\mathbf{1}$	$-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\mathbf{1}$
1. Co-ordinate of the centre	$(0,0)$	$(0,0)$
2. Co-ordinate of the vertices	$(\mathrm{a}, 0) \&(-\mathrm{a}, 0)$	$(0, \mathrm{~b}) \&(0,-\mathrm{b})$
3. Co-ordinate of foci	($\pm \mathrm{ae}, 0$)	($0, \pm$ be)
4. Length of the transverse axes	2a	2b
5. Length of the conjugate axes	2b	2a
6. Equation of directrix	$x= \pm a / e$	$y= \pm b / e$
7. Eccentricity	$e=\sqrt{1+\frac{b^{2}}{a^{2}}}$	$\mathrm{e}=\sqrt{1+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}$
8. Length of latus rectum	$\frac{2 b^{2}}{a}$	$\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}$
9. Equation of transverse axes	$y=0$	$\mathrm{x}=0$
10. Equation of conjugate axes	$\mathrm{x}=0$	$y=0$

3. Parametric equation of the Hyperbola

Let the equation of ellipse in standard form will be given by $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Then the equation of ellipse in the parametric form will be given by $\mathrm{x}=\mathrm{a} \sec \phi, \mathrm{y}=\mathrm{b} \tan \phi$ where ϕ is the eccentric angle whose value vary from $0 \leq \phi<2 \pi$. Therefore coordinate of any point P on the ellipse will be given by $(\mathrm{a} \sec \phi, \mathrm{b} \tan \phi)$.

4. Position of a point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to Hyperbola

The quantity $\frac{\mathrm{x}_{1}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}_{1}^{2}}{\mathrm{~b}^{2}}=1$ is positive, zero or negative according as the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies inside on or outside the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

5. Line and Hyperbola

''The straight line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is a sacant, a tangent or passes outside the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ according as $\mathrm{c}^{2}>=\left\langle\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}\right.$

6. Equation of Tangent

(i) The equation of tangents of slope m to the hyperbola $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ are $\mathrm{y}=\mathrm{mx} \pm$ $\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}$ and the co-ordinates of the point of contacts are

$$
\left(\pm \frac{\mathrm{a}^{2} \mathrm{~m}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}}, \pm \frac{\mathrm{b}^{2}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}}\right)
$$

(ii) Equation of tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{1}, y_{1}\right)$ is $\frac{x x_{1}}{a^{2}}-\frac{\mathrm{yy}_{1}}{\mathrm{~b}^{2}}=1$
(iii) Equation of tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $(a \sec \theta, b \tan \theta)$ is $\frac{x}{a} \sec \theta-\frac{y}{b} \tan \theta=1$

Note: In general two tangents can be drawn from an external point $\left(x_{1}, y_{1}\right)$ to the hyperbola and they are $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}_{1}\left(\mathrm{x}-\mathrm{x}_{1}\right)$ and $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}_{2}\left(\mathrm{x}-\mathrm{x}_{1}\right)$, where m_{1} and m_{2} are roots of $\left(x_{1}^{2}-a^{2}\right) m^{2}-2 x_{1} y_{1}+y_{1}^{2}+b^{2}=0$

SOLVED EXAMPLES

Length of Latus rectum :

Ex. 1 Find the equation of the hyperbola whose directrix is $2 \mathrm{x}+\mathrm{y}=1$, focus $(1,2)$ and eccentricity $\sqrt{3}$.
Sol. Let $P(x, y)$ be any point on the hyperbola. Draw PM perpendicular from P on the directrix.
Then by definition

$$
\begin{gathered}
\mathrm{SP}=\mathrm{e} \mathrm{PM} \\
\Rightarrow(\mathrm{SP})^{2}=\mathrm{e}^{2}(\mathrm{PM})^{2}
\end{gathered}
$$

$\Rightarrow(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}=3\left\{\frac{2 \mathrm{x}+\mathrm{y}-1}{\sqrt{4+1}}\right\}^{2}$
$\Rightarrow 5\left(x^{2}+y^{2}-2 x-4 y+5\right\}$

$$
=3\left(4 x^{2}+y^{2}+1+4 x y-2 y-4 x\right)
$$

$\Rightarrow 7 \mathrm{x}^{2}-2 \mathrm{y}^{2}+12 \mathrm{xy}-2 \mathrm{x}+14 \mathrm{y}-22=0$
which is the required hyperbola.

Ex. 2 Find the lengths of transverse axis and conjugate axis, eccentricity and the coordinates of foci and vertices; lengths of the latus rectum, equations of the directrices of the hyperbola $16 x^{2}-9 y^{2}=-144$.

Sol. The equation $16 x^{2}-9 y^{2}=-144$ can be written as $\frac{x^{2}}{9}-\frac{y^{2}}{16}=-1$. This is of the form

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1
$$

$\therefore \mathrm{a}^{2}=9, \mathrm{~b}^{2}=16 \Rightarrow \mathrm{a}=3, \mathrm{~b}=4$

Length of transverse axis :

The length of transverse axis $=2 \mathrm{~b}=8$

Length of conjugate axis :

The length of conjugate axis $=2 \mathrm{a}=6$
Eccentricity : $\mathrm{e}=\sqrt{1+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}}=\sqrt{1+\frac{9}{16}}=\frac{5}{4}$
Foci : the co- ordinates of the foci are $(0, \pm$ be $)$, i.e., $(0, \pm 4)$

The length of latus rectum $=\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=\frac{2(3)^{2}}{4}=\frac{9}{2}$

Equation of directrices :

The equation of directrices are $y= \pm \frac{b}{e}$

$$
y= \pm \frac{4}{(5 / 4)}= \pm \frac{16}{5}
$$

Ex. 3 Find the position of the point (5, - 4) relative to the hyperbola $9 x^{2}-y^{2}=1$.
Sol. Since $9(5)^{2}-(-4)^{2}-1=225-16-1=208>0$ so the point $(5,-4)$ lies outside the hyperbola $9 x^{2}-y^{2}=1$

Ex. 4 The line $5 x+12 y=9$ touches the hyperbola $x^{2}-9 y^{2}=9$ at the point
(A) $(-5,4 / 3)$
(B) $(5,-4 / 3)$
(C) $(3,-1 / 2)$
(D) None of these

Sol.[B] We have : $\mathrm{m}=$ Slope of the tangent $=-\frac{5}{12}$
If a line of slope m is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then the coordinates of the point of contact are
$\left(\pm \frac{a^{2} m}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}}, \pm \frac{\mathrm{b}^{2}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}}}\right)$
Here, $a^{2}=9, b^{2}=1$ and $m=-5 / 12$
So, points of contact are $\left(\pm 5, \pm \frac{4}{3}\right)$
i.e. $\left(-5, \frac{4}{3}\right)$ and $\left(5,-\frac{4}{3}\right)$.

Out of these two points $\left(5,-\frac{4}{3}\right)$ lies on the line $5 x+12 y=9$. Hence, $\left(5,-\frac{4}{3}\right)$ is the required point.

Ex. 5 The equation of the common tangents to the parabola $y^{2}=8 x$ and the hyperbola $3 x^{2}-y^{2}=3$ is -
(A) $2 x \pm y+1=0$
(B) $x \pm y+1=0$
(C) $x \pm 2 y+1=0$
(D) $x \pm y+2=0$

Sol.[A] Parabola $y^{2}=8 x$
$\therefore 4 a=8 \Rightarrow a=2$
Any tangent to the parabola is
$y=m x+\frac{2}{m}$
If it is also tangent to the hyperbola
$\frac{x^{2}}{1}-\frac{y^{2}}{3}=1$ i.e. $a^{2}=1, b^{2}=3$ then
$\mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2} \Rightarrow\left(\frac{2}{\mathrm{~m}}\right)^{2}=1 . \mathrm{m}^{2}-3$
or $\mathrm{m}^{4}-3 \mathrm{~m}^{2}-4=0 \Rightarrow\left(\mathrm{~m}^{2}-4\right)\left(\mathrm{m}^{2}+1\right)=0$
$\therefore \mathrm{m}= \pm 2$ putting for m in (i), we get the tangents
as $2 \mathrm{x} \pm \mathrm{y}+1=0$

Ex. 6 The locus of the point of intersection of the lines $\sqrt{3} x-y-4 \sqrt{3} k=0$ and
$\sqrt{3} \mathrm{kx}+\mathrm{ky}-4 \sqrt{3}=0$ for different values of k is -
(A) Ellipse
(B) Parabola
(C) Circle
(D) Hyperbola

Sol.[D] $\sqrt{3} \mathrm{x}-\mathrm{y}=4 \sqrt{3} \mathrm{k}$
and $\sqrt{3} \mathrm{kx}+\mathrm{ky}-4 \sqrt{3}=0$
$\Rightarrow \mathrm{k}(\sqrt{3} \mathrm{x}+\mathrm{y})=4 \sqrt{3}$
To find the locus of their point of intersection eliminate the variable K between the equations from (i) $K=\frac{\sqrt{3} x-y}{4 \sqrt{3}}$ and putting in (ii), we get $(\sqrt{3} x-y)(\sqrt{3} x+y)=(4 \sqrt{3})^{2}$

$$
3 x^{2}-y^{2}=48
$$

or $\frac{x^{2}}{16}-\frac{y^{2}}{48}=1$
Hence the locus is hyperbola

Ex. 7 The eccentricity of the conic represented by $x^{2}-y^{2}-4 x+4 y+16=0$ is -
(A) 1
(B) $\sqrt{2}$
(C) 2
(D) $\frac{1}{2}$

Sol.[B] We have $x^{2}-y^{2}-4 x+4 y+16=0$
or $\left(x^{2}-4 x\right)-\left(y^{2}-4 y\right)=-16$
or $\left(x^{2}-4 x+4\right)-\left(y^{2}-4 y+4\right)=-16$
or $(x-2)^{2}-(y-2)^{2}=-16$
or $\frac{(x-2)^{2}}{4^{2}}-\frac{(y-2)^{2}}{4^{2}}=-1$
i.e. $\mathrm{e}^{2}=1+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}(\because$ conjugate hyperbola $)$

$$
e^{2}=1+\frac{4^{2}}{4^{2}} \Rightarrow \mathrm{e}=\sqrt{2}
$$

Ex. 8 The equation $9 x^{2}-16 y^{2}-18 x+32 y-151=0$ represent a hyperbola -
(A) The length of the transverse axes is 4
(B) Length of latus rectum is 9
(C) Equation of directrix is $x=\frac{21}{5}$ and $x=-\frac{11}{5}$
(D) None of these

Sol.[C] We have $9 x^{2}-16 y^{2}-18 x+32 y-151=0$
$9\left(x^{2}-2 x\right)-16\left(y^{2}-2 y\right)=151$
$9\left(x^{2}-2 x+1\right)-16\left(y^{2}-2 y+1\right)=144$
$9(x-1)^{2}-16(y-1)^{2}=144$

$$
\frac{(x-1)^{2}}{16}-\frac{(y-1)^{2}}{9}=1
$$

Comparing with $\frac{X^{2}}{a^{2}}-\frac{Y^{2}}{b^{2}}=1$
where $\mathrm{X}=\mathrm{x}-1, \mathrm{Y}=\mathrm{y}-1$
and $\quad a^{2}=16, b^{2}=9$ so
The length of the transverse axes $=2 \mathrm{a}=8$
The length of the latus rectum $=\frac{2 b^{2}}{a}=\frac{9}{2}$
The equation of the directrix $X= \pm \frac{a}{e}$
$x-1= \pm \frac{16}{5} \Rightarrow x= \pm \frac{16}{5}+1$
$x=\frac{21}{5} ; x=-\frac{11}{5}$

Ex. 9 For what value of λ does the line $y=2 x+\lambda$ touches the hyperbola $16 x^{2}-9 y^{2}=144$?
Sol. $\quad \because$ Equation of hyperbola is $16 x^{2}-9 y^{2}=144$
or $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ comparing this with
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, we get $a^{2}=9, b^{2}=16$ and
comparing this line $\mathrm{y}=2 \mathrm{x}+\lambda$ with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$;
$\mathrm{m}=2 \& \mathrm{c}=\lambda$
If the line $y=2 x+\lambda$ touches the hyperbola
$16 x^{2}-9 y^{2}=144$
then $\mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2} \Rightarrow \lambda=9(2)^{2}-16$
$\therefore \lambda= \pm 2 \sqrt{ } 5$

Ex. 10 Find the equation of the tangent to the hyperbola $x^{2}-4 y^{2}=36$ which is perpendicular to the line $x-y+4=0$.
Sol. Let m be the slope of the tangent since the tangent is perpendicular to the line $x-y+4=0$.
$\therefore \mathrm{mx} 1=-1$
$\Rightarrow \mathrm{m}=-1$
since

$$
x^{2}-4 y^{2}=36
$$

or $\frac{x^{2}}{36}-\frac{y^{2}}{9}=1$
Comparing this with $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$;
$\therefore \mathrm{a}^{2}=36 \& \mathrm{~b}^{2}=9$ so the equation of tangents are $y=(-1) x \pm \sqrt{36 x(-1)^{2}-9}$
$\Rightarrow y=-x \pm \sqrt{ } 27$ or $x+y \pm 3 \sqrt{ } 3=0$

