HYPERBOLA

(KEY CONCEPTS + SOLVED EXAMPLES)

HYPERBOLA

- 1. Standard equation and definitions
- 2. Conjugate Hyperbola
- 3. Parametric equation of the Hyperbola
- 4. Position of a point $P(x_1, y_1)$ with respect to Hyperbola
- 5. Line and Hyperbola
- 6. Equation of the Tangent

KEY CONCEPTS

Standard Equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ Z z Λy т $\mathbf{P}(\mathbf{x}, \mathbf{y})$ M' Μ (0, 0)K' Κ A'(-a, 0)0 (a, 0)(ae, 0)(- ae, 0) T′ L

(i) Definition hyperbola :

A **Hyperbola** is the locus of a point in a plane which moves in the plane in such a way that the ratio of its distance from a fixed point (called focus) in the same plane to its distance from a fixed line (called directrix) is always constant which is always greater than unity.

1. Standard Equation and Definitions

(ii) Vertices :

The point A and A' where the curve meets the line joining the foci S and S' are called vertices of hyperbola.

(iii) Transverse and Conjugate axes :

The straight line joining the vertices A and A' is called transverse axes of the hyperbola. Straight line perpendicular to the transverse axes and passes through its centre called conjugate axes.

(iv) Latus Rectum :

The chord of the hyperbola which passes through the focus and is perpendicular to its transverse axes is

called latus rectum. Length of latus rectum =
$$\frac{2b^2}{a}$$

(v) Eccentricity:

For the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $b^2 = a^2 (e^2 - 1)$

$$e = \sqrt{1 + \left(\frac{2b}{2a}\right)^2} = \sqrt{1 + \left(\frac{\text{Conjugate axes}}{\text{Transverse axes}}\right)^2}$$

(vi) Focal distance :

The distance of any point on the hyperbola from the focus is called the focal distance of the point.

Note : The difference of the focal distance of a point on the hyperbola is constant and is equal to the length of the transverse axes. |S'P - SP| = 2a (const.)

2. Conjugate Hyperbola

The hyperbola whose transverse and conjugate axes are respectively the conjugate and transverse axes of a given hyperbola is called conjugate hyperbola.

Equation of conjugate hyperbola
$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Note :

- (i) If e_1 and e_2 are the eccentricities of the hyperbola and its conjugate then $\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$
- (ii) The focus of hyperbola and its conjugate are concyclic.

S.No. Particulars	Hyperbola	Conjugate Hyperbola
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
1. Co-ordinate of the centre	(0, 0)	(0, 0)
2. Co-ordinate of the vertices	(a, 0) & (-a, 0)	(0, b) & (0, -b)
3. Co-ordinate of foci	(± ae, 0)	$(0, \pm be)$
4. Length of the transverse axes	2a	2b
5. Length of the conjugate axes	2b	2a
6. Equation of directrix	$x = \pm a/e$	$y = \pm b/e$
7. Eccentricity	$e = \sqrt{1 + \frac{b^2}{a^2}}$	$e = \sqrt{1 + \frac{a^2}{b^2}}$
8. Length of latus rectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
9. Equation of transverse axes	$\mathbf{y} = 0$	$\mathbf{x} = 0$
10. Equation of conjugate axes	$\mathbf{x} = 0$	$\mathbf{y} = 0$

3. Parametric equation of the Hyperbola

Let the equation of ellipse in standard form will be

given by $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Then the equation of ellipse in the parametric form will be given by $x = a \sec \phi$, $y = b \tan \phi$ where ϕ is the eccentric angle whose value vary from $0 \le \phi < 2\pi$. Therefore coordinate of any point P on the ellipse will be given by (a sec ϕ , b tan ϕ).

4. Position of a point P(x₁, y₁) with respect to Hyperbola

The quantity $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$ is positive, zero or negative according as the point (x_1, y_1) lies inside on or outside the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

5. Line and Hyperbola

"The straight line y = mx + c is a sacant, a tangent or passes outside the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ according as $c^2 > = < a^2m^2 - b^2$

6. Equation of Tangent

(i) The equation of tangents of slope m to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are $y = mx \pm \sqrt{a^2m^2 - b^2}$ and the co-ordinates of the point of contacts are

$$\left(\pm\frac{a^2m}{\sqrt{a^2m^2-b^2}},\pm\frac{b^2}{\sqrt{a^2m^2-b^2}}\right)$$

(ii) Equation of tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

at the point
$$(x_1, y_1)$$
 is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$

- (iii) Equation of tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
 - at the point (a sec θ , b tan θ) is $\frac{x}{a} \sec \theta \frac{y}{b} \tan \theta = 1$
- **Note :** In general two tangents can be drawn from an external point (x_1, y_1) to the hyperbola and they are $y y_1 = m_1 (x x_1)$ and $y y_1 = m_2 (x x_1)$, where m_1 and m_2 are roots of

$$(x_1^2 - a^2) m^2 - 2x_1y_1 + y_1^2 + b^2 = 0$$

SOLVED EXAMPLES

- Ex.1 Find the equation of the hyperbola whose directrix is 2x + y = 1, focus (1, 2) and eccentricity $\sqrt{3}$.
- Let P(x,y) be any point on the hyperbola. Sol. Draw PM perpendicular from P on the directrix.

Then by definition

D) (

$$SP = e PM$$

$$\Rightarrow (SP)^2 = e^2(PM)^2$$

$$\Rightarrow (x-1)^2 + (y-2)^2 = 3 \left\{ \frac{2x+y-1}{\sqrt{4+1}} \right\}^2$$

$$\Rightarrow 5(x^2 + y^2 - 2x - 4y + 5)$$

$$= 3(4x^2 + y^2 + 1 + 4xy - 2y - 4x)$$

$$\Rightarrow 7x^2 - 2y^2 + 12xy - 2x + 14y - 22 = 0$$

which is the required hyperbola.

- Ex.2 Find the lengths of transverse axis and conjugate axis, eccentricity and the coordinates of foci and vertices; lengths of the latus rectum, equations of the directrices of the hyperbola $16x^2 - 9y^2 = -144$.
- Sol. The equation $16x^2 - 9y^2 = -144$ can be written as $\frac{x^2}{\Omega} - \frac{y^2}{16} = -1$. This is of the form

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

 \therefore $a^2 = 9$, $b^2 = 16 \implies a = 3$, b = 4

Length of transverse axis :

The length of transverse axis = 2b = 8

Length of conjugate axis :

The length of conjugate axis = 2a = 6

Eccentricity :
$$e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{1 + \frac{9}{16}} = \frac{5}{4}$$

Foci : the co- ordinates of the foci are $(0,\pm be)$, i.e., $(0, \pm 4)$

Length of Latus rectum :

The length of latus rectum =
$$\frac{2a^2}{b} = \frac{2(3)^2}{4} = \frac{9}{2}$$

Equation of directrices :

The equation of directrices are
$$y = \pm \frac{b}{e}$$

$$y = \pm \frac{4}{(5/4)} = \pm \frac{16}{5}$$

- Find the position of the point (5, -4) relative Ex.3 to the hyperbola $9x^2 - y^2 = 1$.
- Since $9(5)^2 (-4)^2 1 = 225 16 1 = 208 > 0$ Sol. so the point (5, -4) lies outside the hyperbola $9x^2 - y^2 = 1$
- The line 5x + 12y = 9 touches the hyperbola Ex.4 $x^2 - 9y^2 = 9$ at the point (A) (-5, 4/3)(B) (5, -4/3)
 - (C) (3, -1/2)
 - (D) None of these

Sol.[B] We have : m = Slope of the tangent = $-\frac{5}{12}$

If a line of slope m is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then the coordinates of the point of contact are

$$\left(\pm \frac{a^2m}{\sqrt{a^2m^2 - b^2}}, \pm \frac{b^2}{\sqrt{a^2m^2 - b^2}}\right)$$

Here, $a^2 = 9$, $b^2 = 1$ and $m = -5/12$
So, points of contact are $\left(\pm 5, \pm \frac{4}{3}\right)$
i.e. $\left(-5, \frac{4}{3}\right)$ and $\left(5, -\frac{4}{3}\right)$.
Out of these two points $\left(5, -\frac{4}{3}\right)$ lies on the line
 $5x + 12y = 9$. Hence, $\left(5, -\frac{4}{3}\right)$ is the required point.

Ex. 5 The equation of the common tangents to the parabola $y^2 = 8x$ and the hyperbola $3x^2 - y^2 = 3$ is -

- (A) $2x \pm y + 1 = 0$ (B) $x \pm y + 1 = 0$ (C) $x \pm 2y + 1 = 0$ (D) $x \pm y + 2 = 0$
- **Sol.**[A] Parabola $y^2 = 8x$
 - \therefore 4a = 8 \Rightarrow a = 2

Any tangent to the parabola is

$$y = mx + \frac{2}{m} \qquad \dots (i)$$

If it is also tangent to the hyperbola

$$\frac{x^2}{1} - \frac{y^2}{3} = 1$$
 i.e. $a^2 = 1, b^2 = 3$ then

$$c^{2} = a^{2}m^{2} - b^{2} \Rightarrow \left(\frac{-}{m}\right)^{2} = 1.m^{2} - 3$$

or $m^{4} - 3m^{2} - 4 = 0 \Rightarrow (m^{2} - 4) (m^{2} + 1) = 0$
 $\therefore m = \pm 2$ putting for m in (i), we get the tangents
as $2x \pm y + 1 = 0$

Ex.6 The locus of the point of intersection of the lines $\sqrt{3} x - y - 4\sqrt{3} k = 0$ and $\sqrt{3} kx + ky - 4\sqrt{3} = 0$ for different values of k

- is -
- (A) Ellipse
- (B) Parabola
- (C) Circle

(D) Hyperbola

Sol.[D] $\sqrt{3} x - y = 4\sqrt{3} k$

and
$$\sqrt{3} \text{ kx} + \text{ky} - 4\sqrt{3} = 0$$

$$\Rightarrow \text{ k} (\sqrt{3} \text{ x} + \text{y}) = 4\sqrt{3} \qquad \dots (\text{ii})$$

To find the locus of their point of intersection eliminate the variable K between the equations

...(i)

from (i) K =
$$\frac{\sqrt{3}x - y}{4\sqrt{3}}$$
 and putting in (ii), we get
($\sqrt{3}x - y$) ($\sqrt{3}x + y$) = $(4\sqrt{3})^2$
 $3x^2 - y^2 = 48$
or $\frac{x^2}{16} - \frac{y^2}{48} = 1$

Hence the locus is hyperbola

Ex.7 The eccentricity of the conic represented by $x^2 - y^2 - 4x + 4y + 16 = 0$ is -

(B) $\sqrt{2}$

(D) $\frac{1}{2}$

Sol.[B] We have
$$x^2 - y^2 - 4x + 4y + 16 = 0$$

or $(x^2 - 4x) - (y^2 - 4y) = -16$
or $(x^2 - 4x + 4) - (y^2 - 4y + 4) = -16$
or $(x - 2)^2 - (y - 2)^2 = -16$
or $\frac{(x - 2)^2}{4^2} - \frac{(y - 2)^2}{4^2} = -1$
i.e. $e^2 = 1 + \frac{a^2}{b^2}$ (\because conjugate hyperbola)

$$e^2 = 1 + \frac{4^2}{4^2} \quad \Rightarrow \quad e = \sqrt{2}$$

Ex.8 The equation $9x^2 - 16y^2 - 18x + 32y - 151 = 0$ represent a hyperbola -

- (A) The length of the transverse axes is 4
- (B) Length of latus rectum is 9
- (C) Equation of directrix is $x = \frac{21}{5}$ and $x = -\frac{11}{5}$

(D) None of these

Sol.[C] We have

$$9x^2 - 16y^2 - 18x + 32y - 151 = 0$$

 $9(x^2 - 2x) - 16(y^2 - 2y) = 151$
 $9(x^2 - 2x + 1) - 16(y^2 - 2y + 1) = 144$
 $9(x - 1)^2 - 16(y - 1)^2 = 144$
 $\frac{(x - 1)^2}{16} - \frac{(y - 1)^2}{9} = 1$
Comparing with $\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1$
where $X = x - 1$, $Y = y - 1$
and $a^2 = 16$, $b^2 = 9$ so
The length of the transverse axes $= 2a = 8$
The length of the latus rectum $= \frac{2b^2}{a} = \frac{9}{2}$
The equation of the directrix $X = \pm \frac{a}{e}$
 $x - 1 = \pm \frac{16}{5} \Rightarrow x = \pm \frac{16}{5} + 1$
 $x = \frac{21}{5}$; $x = -\frac{11}{5}$

7

Ex.9 For what value of λ does the line $y = 2x + \lambda$ touches the hyperbola $16x^2 - 9y^2 = 144$?

Sol. : Equation of hyperbola is $16x^2 - 9y^2 = 144$

or
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$
 comparing this with
 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we get $a^2 = 9$, $b^2 = 16$ and

comparing this line $y=2x+\lambda$ with y=mx+c ; $m=2\ \&\ c=\lambda$

If the line $y = 2x + \lambda$ touches the hyperbola $16x^2 - 9y^2 = 144$ then $c^2 = a^2m^2 - b^2 \implies \lambda = 9(2)^2 - 16$ $\therefore \lambda = \pm 2\sqrt{5}$

- **Ex.10** Find the equation of the tangent to the hyperbola $x^2 4y^2 = 36$ which is perpendicular to the line x y + 4 = 0.
- Sol. Let m be the slope of the tangent since the tangent is perpendicular to the line x y + 4 = 0.

 $\therefore m x 1 = -1 \qquad \Rightarrow m = -1$ since $x^2 - 4y^2 = 36$

or
$$\frac{x^2}{36} - \frac{y^2}{9} = 1$$

Comparing this with $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1;$

 \therefore a² = 36 & b² = 9 so the equation of tangents are

$$y = (-1) x \pm \sqrt{36 x (-1)^2 - 9}$$
$$\Rightarrow y = -x \pm \sqrt{27} \text{ or } x + y \pm 3\sqrt{3} = 0$$

P